解析几何知识点 篇1
什么是几何图形:
点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形(geometric figure)
几何图形一般分为立体图形(solid figure)和平面图形(plane figure)。
我们所熟悉的几何图形:
正方形
a-----边长C=4aS=a2
长方形
a和b-----边长C=2(a+b)S=ab
三角形
a,b,c-----三边长h-----a边上的高s-----周长的`一半A,B,C-----内角
其中s=(a+b+c)/2S=ah/2=ab/2sinC=[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA)
四边形
d,D-----对角线长-----对角线夹角S=dD/2sin
平行四边形
a,b-----边长h-----a边的高-----两边夹角S=ah=absin
菱形
a-----边长-----夹角D-----长对角线长d-----短对角线长S=Dd/2=a2sin
梯形
a和b-----上、下底长h-----高m-----中位线长S=(a+b)h/2=mh
圆
r-----半径d-----直径C=d=2rS=r2=d2/4
扇形
r-----扇形半径a-----圆心角度数C=2r+2(a/360)S=r2(a/360)
弓形
l-----弧长b-----弦长h-----矢高r-----半径-----圆心角的度数
S=r2/2(/180-sin)=r2arccos[(r-h)/r]-(r-h)(2rh-h2)1/2=r2/360-b/2[r2-(b/2)2]1/2=r(l-b)/2+bh/22bh/3
圆环
R-----外圆半径r-----内圆半径D-----外圆直径d-----内圆直径S=(R2-r2)=(D2-d2)/4
解析几何知识点 篇2
一、教学目标
1、回顾并巩固高中数学的核心知识点,构建完整的知识体系。
2、提高学生解决数学问题的能力,包括代数、几何、三角函数、数列、概率统计等。
3、培养学生的数学逻辑思维和解题技巧,为高考数学做好充分准备。
二、教学重难点
1、重点:函数、数列、三角函数、解析几何、立体几何、概率统计等核心知识点。
2、难点:知识点的综合运用,特别是在解决复杂问题时的逻辑分析与推理能力。
三、教学方法
1、讲授法:系统梳理数学知识,明确复习重点和难点。
2、练习法:通过大量练习题,提高学生的解题能力和速度。
3、讨论法:针对典型问题进行讨论,引导学生自主思考,提高解题技巧。
四、教学过程
(一)导入新课(5分钟)
1、简要介绍本节课的复习目标和重点,明确学习方向。
2、引导学生回顾上节课的内容,为新知识的学习做好铺垫。
(二)代数部分复习(20分钟)
1、系统梳理函数、数列等代数知识点,强调重点概念和公式。
2、通过例题和练习题,让学生熟悉代数问题的解题方法和技巧。
3、引导学生总结代数问题的常见类型和解题思路。
(三)三角函数部分复习(15分钟)
1、回顾三角函数的定义、性质和图像,强调正弦、余弦、正切等函数的性质。
2、通过例题和练习题,让学生掌握三角函数问题的解题方法和技巧。
3、引导学生总结三角函数问题的常见类型和解题思路。
(四)解析几何部分复习(15分钟)
1、系统梳理直线、圆、椭圆、双曲线等解析几何知识点,强调基本公式和性质。
2、通过例题和练习题,让学生掌握解析几何问题的解题方法和技巧。
3、引导学生总结解析几何问题的常见类型和解题思路。
(五)立体几何部分复习(10分钟)
1、回顾立体几何的基本概念和性质,如空间直线、平面、多面体等。
2、通过例题和练习题,让学生掌握立体几何问题的解题方法和技巧。
3、引导学生总结立体几何问题的常见类型和解题思路。
(六)概率统计部分复习(10分钟)
1、回顾概率统计的基本概念和公式,如随机事件、概率、期望等。
2、通过例题和练习题,让学生掌握概率统计问题的解题方法和技巧。
3、引导学生总结概率统计问题的常见类型和解题思路。
(七)课堂小结(5分钟)
1、总结本节课的复习内容,强调重点和难点。
2、布置课后作业:要求学生整理本节课的复习笔记,并针对自己的薄弱环节进行有针对性的练习。
解析几何知识点 篇3
A、图形的认识
1、点,线,面
点,线,面:①图形是由点,线,面构成的。②面与面相交得线,线与线相交得点。③点动成线,线动成面,面动成体。
展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。②N棱柱就是底面图形有N条边的棱柱。
截一个几何体:用一个平面去截一个图形,截出的面叫做截面。
视图:主视图,左视图,俯视图。
多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。
弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。②圆可以分割成若干个扇形。
2、角
线:①线段有两个端点。②将线段向一个方向无限延长就形成了射线。射线只有一个端点。③将线段的两端无限延长就形成了直线。直线没有端点。④经过两点有且只有一条直线。
比较长短:①两点之间的所有连线中,线段最短。②两点之间线段的长度,叫做这两点之间的距离。
角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。②一度的1/60是一分,一分的1/60是一秒。
角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。
平行:①同一平面内,不相交的两条直线叫做平行线。②经过直线外一点,有且只有一条直线与这条直线平行。③如果两条直线都与第3条直线平行,那么这两条直线互相平行。
垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。②互相垂直的两条直线的交点叫做垂足。③平面内,过一点有且只有一条直线与已知直线垂直。
垂直平分线:垂直和平分一条线段的直线叫垂直平分线。
垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。
垂直平分线定理:
性质定理:在垂直平分线上的点到该线段两端点的距离相等;
判定定理:到线段2端点距离相等的点在这线段的垂直平分线上
角平分线:把一个角平分的射线叫该角的角平分线。
定义中有几个要点要注意一下的,就是角的角平分线是一条射线,不是线段也不是直线,很多时,在题目中会出现直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点
性质定理:角平分线上的点到该角两边的距离相等
判定定理:到角的两边距离相等的点在该角的角平分线上
正方形:一组邻边相等的矩形是正方形
性质:正方形具有平行四边形、菱形、矩形的一切性质
判定:
1、对角线相等的菱形
2、邻边相等的矩形
3、相交线与平行线
角:①如果两个角的和是直角,那么称和两个角互为余角;如果两个角的和是平角,那么称这两个角互为补角。②同角或等角的余角/补角相等。③对顶角相等。④同位角相等/内错角相等/同旁内角互补,两直线平行,反之亦然。
4、三角形
三角形:①由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。②三角形任意两边之和大于第三边。三角形任意两边之差小于第三边。③三角形三个内角的和等于180度。④三角形分锐角三角形/直角三角形/钝角三角形。⑤直角三角形的两个锐角互余。⑥三角形中一个内角的角平分线与他的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。⑦三角形中,连接一个顶点与他对边中点的线段叫做这个三角形的中线。⑧三角形的三条角平分线交于一点,三条中线交于一点。⑨从三角形的一个顶点向他的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高。⑩三角形的三条高所在的直线交于一点。
图形的全等:全等图形的形状和大小都相同。两个能够重合的图形叫全等图形。
全等三角形:①全等三角形的对应边/角相等。
②条件:SSS、AAS、ASA、SAS、HL。
勾股定理:直角三角形两直角边的平方和等于斜边的平方,反之亦然。
5、四边形
平行四边形的性质:①两组对边分别平行的四边形叫做平行四边形。②平行四边形不相邻的两个顶点连成的线段叫他的对角线。③平行四边形的对边/对角相等。④平行四边形的对角线互相平分。
平行四边形的.判定条件:两条对角线互相平分的四边形、一组对边平行且相等的四边形、两组对边分别相等的四边形/定义。
菱形:①一组邻边相等的平行四边形是菱形。②领心的四条边相等,两条对角线互相垂直平分,每一组对角线平分一组对角。③判定条件:定义/对角线互相垂直的平行四边形/四条边都相等的四边形。
矩形与正方形:①有一个内角是直角的平行四边形叫做矩形。②矩形的对角线相等,四个角都是直角。③对角线相等的平行四边形是矩形。④正方形具有平行四边形,矩形,菱形的一切性质。⑤一组邻边相等的矩形是正方形。
梯形:①一组对边平行而另一组对边不平行的四边形叫梯形。②两条腰相等的梯形叫等腰梯形。③一条腰和底垂直的梯形叫做直角梯形。④等腰梯形同一底上的两个内角相等,对角线星等,反之亦然。
多边形:①N边形的内角和等于(N-2)180度。②多边心内角的一边与另一边的反向延长线所组成的角叫做这个多边形的外角,在每个顶点处取这个多边形的一个外角,他们的和叫做这个多边形的内角和(都等于360度)
平面图形的密铺:三角形,四边形和正六边形可以密铺。
中心对称图形:①在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。②中心对称图形上的每一对对应点所连成的线段都被对称中心平分。
B、图形与变换:
1、图形的轴对称
轴对称:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
轴对称图形:①角的平分线上的点到这个角的两边的距离相等。②线段垂直平分线上的点到这条线段两个端点的距离相等。③等腰三角形的“三线合一”。
轴对称的性质:对应点所连的线段被对称轴垂直平分,对应线段/对应角相等。
2、图形的平移和旋转
平移:①在平面内,将一个图形沿着某个方向移动一定的距离,这样的图形运动叫做平移。②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等。
旋转:①在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动叫做旋转。②经过旋转,图形商店每一个点都绕旋转中心沿相同方向转动了相同的角度,任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。
3、图形的相似
比:①A/B=C/D,那么AD=BC,反之亦然。②A/B=C/D,那么A土B/B=C土D/D。③A/B=C/D=...=M/N,那么A+C+…+M/B+D+…N=A/B。
黄金分割:点C把线段AB分成两条线段AC与BC,如果AC/AB=BC/AC,那么称线段AB被点C黄金分割,点C叫做线段AB的黄金分割点,AC与AB的比叫做黄金比(根号5-1/2)。
相似:①各角对应相等,各边对应成比例的两个多边形叫做相似多边形。②相似多边形对应边的比叫做相似比。
相似三角形:①三角对应相等,三边对应成比例的两个三角形叫做相似三角形。②条件:AAA、SSS、SAS。
相似多边形的性质:①相似三角形对应高,对应角平分线,对应中线的比都等于相似比。②相似多边形的周长比等于相似比,面积比等于相似比的平方。
图形的放大与缩小:①如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比。②位似图形上任意一对对应点到位似中心的距离之比等于位似比。
C、图形的坐标
平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴与Y轴统称坐标轴,他们的公共原点O称为直角坐标系的原点。他们分4个象限。XA,YB记作(A,B)。
D、证明
定义与命题:①对名称与术语的含义加以描述,作出明确的规定,也就是给出他们的定义。②对事情进行判断的句子叫做命题(分真命题与假命题)。③每个命题是由条件和结论两部分组成。④要说明一个命题是假命题,通常举出一个离子,使之具备命题的条件,而不具有命题的结论,这种例子叫做反例。
公理:①公认的真命题叫做公理。②其他真命题的正确性都通过推理的方法证实,经过证明的真命题称为定理。③同位角相等,两直线平行,反之亦然;SAS、ASA、SSS,反之亦然;同旁内角互补,两直线平行,反之亦然;内错角相等,两直线平行,反之亦然;三角形三个内角的和等于180度;三角形的一个外交等于和他不相邻的两个内角的和;三角心的一个外角大于任何一个和他不相邻的内角。④由一个公理或定理直接推出的定理,叫做这个公理或定理的推论。
解析几何知识点 篇4
什么是不等式?
一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。
通常不等式中的`数是实数,字母也代表实数,不等式的一般形式为F(x,y,……,z)≤G(x,y,……,z)(其中不等号也可以为<,≤,≥,>中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。
数学知识点1、不等式性质比较大小方法:
(1)作差比较法(2)作商比较法
不等式的基本性质
①对称性:a > b,b > a
②传递性:a > b,b > ca > c
③可加性:a > b a + c > b + c
④可积性:a > b,c > 0,ac > bc
⑤加法法则:a > b,c > d,a + c > b + d
⑥乘法法则:a > b > 0,c > d > 0,ac > bd
⑦乘方法则:a > b > 0,an > bn(n∈N)
⑧开方法则:a > b > 0
数学知识点2、算术平均数与几何平均数定理:
(1)如果a、b∈R,那么a2 + b2 ≥2ab;(当且仅当a=b时等号)
(2)如果a、b∈R+,那么(当且仅当a=b时等号)推广:
如果为实数,则重要结论
(1)如果积xy是定值P,那么当x=y时,和x+y有最小值2;
(2)如果和x+y是定值S,那么当x=y时,和xy有最大值S2/4。
数学知识点3、证明不等式的常用方法:
比较法:比较法是最基本、最重要的方法。
当不等式的两边的差能分解因式或能配成平方和的形式,则选择作差比较法;当不等式的两边都是正数且它们的商能与1比较大小,则选择作商比较法;碰到绝对值或根式,我们还可以考虑作平方差。
综合法:从已知或已证明过的不等式出发,根据不等式的性质推导出欲证的不等式。综合法的放缩经常用到均值不等式。
分析法:不等式两边的联系不够清楚,通过寻找不等式成立的充分条件,逐步将欲证的不等式转化,直到寻找到易证或已知成立的结论。
解析几何知识点 篇5
教学目标:
1、回顾并巩固高三数学课程的核心知识点,如数列、三角函数、立体几何、解析几何、概率统计等。
2、提高学生的数学解题能力,包括解题速度、准确性和创新性。
3、帮助学生熟悉高考数学的题型和解题技巧,为高考做好准备。
教学重难点:
1、重点:数列的通项与求和、三角函数的性质与变换、立体几何的空间想象与计算、解析几何的方程与性质、概率统计的基本概念与计算。
2、难点:数列的递推关系与不等式、三角函数的综合应用、立体几何的复杂图形与计算、解析几何的复杂问题与求解、概率统计的实际应用。
教学方法:
讲授法、讨论法、练习法、专题复习法。
教学准备:
多媒体课件、高考数学真题和模拟题、相关数学工具(如计算器、几何模型等)。
教学过程:
一、导入(5分钟)
1、回顾上节课复习内容,检查学生掌握情况。
2、简要介绍本节课的复习目标和内容。
二、知识梳理与回顾(30分钟)
(一)按照数学模块,逐一梳理并回顾核心知识点。
1、数列:等差数列、等比数列的通项与求和公式,数列的递推关系与不等式。
2、三角函数:三角函数的性质、图像与变换,同角三角函数的关系,两角和与差的正弦、余弦公式等。
3、立体几何:空间直线与平面的位置关系,空间几何体的性质与计算(如表面积、体积等)。
4、解析几何:直线与圆的方程,圆锥曲线的性质与方程,参数方程与极坐标等。
5、概率统计:概率的基本概念与计算,统计的基本概念与图表,随机变量的分布与期望等。
(二)针对每个模块,通过例题进行知识点的巩固和应用。
三、专题复习(30分钟)
1、针对高考数学中的常考题型和难点,进行专题复习。
2、数列的递推关系与不等式求解。
3、三角函数的综合应用,如求值、化简、证明等。
4、立体几何中的复杂图形与计算,如多面体的外接球、内切球等。
5、解析几何中的复杂问题与求解,如圆锥曲线的综合问题、参数方程与极坐标的应用等。
6、概率统计的实际应用,如概率与统计的结合、随机变量的分布与期望的实际计算等。
7、通过高考真题和模拟题进行练习和巩固。
四、练习巩固(20分钟)
1、发放高考真题和模拟题,让学生独立完成。
2、教师巡视指导,帮助学生解决解题遇到的问题。
3、集中讲解普遍存在的问题和难点,强调解题技巧和规范书写。
五、课堂小结(5分钟)
1、总结复习的内容和重点知识点。
2、强调数学学习的方法和解题技巧,鼓励学生多思考、多练习、多总结。
3、布置课后作业。
解析几何知识点 篇6
数学知识点1
柱、锥、台、球的结构特征
(1)棱柱:
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到
截面距离与高的比的平方。
(3)棱台:
几何特征:
①上下底面是相似的`平行多边形
②侧面是梯形
③侧棱交于原棱锥的顶点
(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成
几何特征:
①底面是全等的圆;
②母线与轴平行;
③轴与底面圆的半径垂直;
④侧面展开图
是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成
几何特征:
①底面是一个圆;
②母线交于圆锥的顶点;
③侧面展开图是一个扇形。
(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成
几何特征:
①上下底面是两个圆;
②侧面母线交于原圆锥的顶点;
③侧面展开图是一个弓形。
(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
几何特征:
①球的截面是圆;
②球面上任意一点到球心的距离等于半径。
数学知识点2
空间几何体的三视图
定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、 俯视图(从上向下)
注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。
数学知识点3
空间几何体的直观图——斜二测画法
斜二测画法特点:
①原来与x轴平行的线段仍然与x平行且长度不变;
②原来与y轴平行的线段仍然与y平行,长度为原来的一半。
解析几何知识点 篇7
有界性
设函数f(x)在区间X上有定义,如果存在M>0,对于一切属于区间X上的x,恒有|f(x)|≤M,则称f(x)在区间X上有界,否则称f(x)在区间上无界.
单调性
设函数f(x)的定义域为D,区间I包含于D.如果对于区间上任意两点x1及x2,当x1f(x2),则称函数f(x)在区间I上是单调递减的单调递增和单调递减的函数统称为单调函数.
奇偶性
设为一个实变量实值函数,若有f(—x)=—f(x),则f(x)为奇函数.
几何上,一个奇函数关于原点对称,亦即其图像在绕原点做180度旋转后不会改变.
奇函数的例子有x、sin(x)、sinh(x)和erf(x).
设f(x)为一实变量实值函数,若有f(x)=f(—x),则f(x)为偶函数.
几何上,一个偶函数关于y轴对称,亦即其图在对y轴映射后不会改变.
偶函数的例子有|x|、x2、cos(x)和cosh(x).
偶函数不可能是个双射映射.
连续性
在数学中,连续是函数的一种属性.直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数.如果输入值的.某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性).
解析几何知识点 篇8
教学目标:
1、回顾并巩固高中数学的核心知识点,形成完整的知识体系。
2、提高学生的数学解题能力和思维水平,熟悉高考数学的题型和解题思路。
3、培养学生的数学学习兴趣和自学能力,为高考数学做好准备。
教学重难点:
1、重点:函数、数列、三角函数、立体几何、解析几何、概率统计等模块的重点知识点。
2、难点:复杂数学问题的分析和解决能力,如导数在函数中的应用、数列的递推关系、立体几何中的空间角计算等。
教学方法:
讲授法、讨论法、练习法、小组合作探究法。
教学准备:
多媒体课件、高考数学真题和模拟题、数学解题技巧资料。
教学过程:
一、导入(5分钟)
简要介绍本节课的复习目标和内容。
二、函数复习(20分钟)
1、复习函数的定义、性质、图像等基础知识。
2、讲解函数在高考中的重要考点,如函数的单调性、奇偶性、周期性等。
3、选取高考真题或模拟题中的函数题目进行练习,指导学生进行解题和分析。
三、数列复习(15分钟)
1、复习数列的定义、通项公式、求和公式等基础知识。
2、讲解数列在高考中的重要考点,如等差数列、等比数列的性质和应用。
3、选取高考真题或模拟题中的数列题目进行练习,指导学生进行解题和分析。
四、三角函数复习(20分钟)
1、复习三角函数的定义、性质、图像等基础知识。
2、讲解三角函数在高考中的重要考点,如正弦定理、余弦定理、三角函数的恒等变换等。
3、选取高考真题或模拟题中的三角函数题目进行练习,指导学生进行解题和分析。
五、立体几何和解析几何复习(20分钟)
1、复习立体几何和解析几何的基础知识,如空间向量、直线和平面的位置关系、圆锥曲线等。
2、讲解立体几何和解析几何在高考中的重要考点,如空间角的计算、圆锥曲线的性质和应用等。
3、选取高考真题或模拟题中的立体几何和解析几何题目进行练习,指导学生进行解题和分析。
六、概率统计复习(10分钟)
1、复习概率统计的基础知识,如随机事件、概率、统计图表等。
2、讲解概率统计在高考中的重要考点,如概率的计算、统计的应用等。
3、选取高考真题或模拟题中的概率统计题目进行练习,指导学生进行解题和分析。
七、练习巩固(15分钟)
1、发放高考数学真题和模拟题,让学生独立完成。
2、教师巡视指导,帮助学生解决解题过程中遇到的问题。
3、集中讲解普遍存在的问题和难点,强调解题技巧和规范书写。
八、课堂小结(5分钟)
1、总结本节课复习的内容和重点知识点。
2、强调数学学习的方法和解题技巧,鼓励学生多思考、多练习。
3、布置课后作业:复习本节课内容,完成相关练习题;预习下一节课内容。
教学反思:
本节课通过系统复习高中数学的核心知识点,帮助学生巩固了数学知识体系,提高了数学解题能力和思维水平。同时,通过练习巩固和课堂小结,激发了学生的学习兴趣和热情。但在教学过程中也发现部分学生存在基础知识掌握不牢、解题思路不清晰等问题,需要在后续教学中加强针对性指导和练习。
解析几何知识点 篇9
数学知识点1、柱、锥、台、球的结构特征
(1)棱柱:
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到
截面距离与高的比的平方。
(3)棱台:
几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点
(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成
几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图
是一个矩形。
(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成
几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:定义:以直角梯形的垂直与底边的腰为旋转轴,旋转一周所成
几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
(7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
数学知识点2、空间几何体的三视图
定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)
注:正视图反映了物体的高度和长度;俯视图反映了物体的长度和宽度;侧视图反映了物体的高度和宽度。
数学知识点3、空间几何体的直观图——斜二测画法
斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;
②原来与y轴平行的线段仍然与y平行,长度为原来的一半。
平面
通常用一个平行四边形来表示。
平面常用希腊字母α、β、γ…或拉丁字母M、N、P来表示,也可用表示平行四边形的两个相对顶点字母表示,如平面AC。
在立体几何中,大写字母A,B,C,…表示点,小写字母,a,b,c,…l,m,n,…表示直线,且把直线和平面看成点的集合,因而能借用集合论中的符号表示它们之间的关系,例如:
a) A∈l—点A在直线l上;Aα—点A不在平面α内;
b) lα—直线l在平面α内;
c) aα—直线a不在平面α内;
d) l∩m=A—直线l与直线m相交于A点;
e) α∩l=A—平面α与直线l交于A点;
f) α∩β=l—平面α与平面β相交于直线l。
二、平面的基本性质
公理1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内。
公理2如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线。
公理3经过不在同一直线上的三个点,有且只有一个平面。
根据上面的公理,可得以下推论。
推论1经过一条直线和这条直线外一点,有且只有一个平面。
推论2经过两条相交直线,有且只有一个平面。
推论3经过两条平行直线,有且只有一个平面。
公理4平行于同一条直线的两条直线互相平行
如何让数学学科预习变得更高效
一、读一读。预习时要认真,要逐字逐词逐句的阅读,用笔把重点画出来,重点加以理解。遇到自己解决不了的问题,作出记号,教师讲解时作为听课的重点。
二、想一想。对预习中感到困难的问题要先思考。如果是基础问题,可以用以前的知识看看能不能弄通。如果是理解上的问题,可以记下来课上认真听讲,通过积极思考去解决。这样有利于提高对知识的理解,养成学习数学的良好思维习惯。
三、说一说。预习时可能感到认识模糊,可以与父母或同学进行讨论,在同学们的合作交流与探讨中找到正确的答案。这样即增加了学生探求新课的兴趣,有可以弄懂数学知识的实际用法,对知识有个准确的概念。
四、写一写。写一写在课前预习中也是很有必要的,预习时要适当做学习笔记,主要包括看书时的初步体会和心得,读明白了的问题的理解,对疑难问题的记录和思考等。
五、做一做。预习应用题,可以用画线段的方法帮助理解数量间的关系,弄清已知条件和所求问题,找到解题的思路。对于一些有关图形方面的问题,可以在预习中动手操作,剪剪拼拼,增加感性认识。
六、补一补。数学课新旧知识间往往存在紧密的联系,预习时如发现学习过的要领有不清楚的地方,一定要在预习时弄明白,并对旧的知识加以巩固和记忆,同时为学习新的知识打下坚实的基础。
七、练一练。往往每课时的例题都是很典型的,预习时应把例题都做一遍,加深领悟的能力。如果做题时出现错误,要想想错在哪,为什么错,怎么改错。如果仍是找不到错误的根源,可在听课时重点听,逐步领会。
该怎么提高数学课堂学习效率
课堂学习是学习过程中最基本,最重要的环节,要坚持做到“五到”即耳到、眼到、口到、心到、手到;
手到:就是以简单扼要的方法记下听课的要点,思维方法,以备复习、消化、再思考,但要以听课为主,记录为辅;
耳到:专心听讲,听老师如何讲课,如何分析、如何归纳总结。另外,还要听同学们的解答,看是否对自己有所启发,特别要注意听自己预习未看懂的问题;
口到:主动与老师、同学们进行合作、探究,敢于提出问题,并发表自己的看法,不要人云亦云;
眼到:就是一看老师讲课的表情,手势所表达的意思,看老师的演示实验、板书内容,二看老师要求看的课本内容,把书上知识与老师课堂讲的知识联系起来;
心到:就是课堂上要认真思考,注意理解课堂的新知识,课堂上的思考要主动积极。关键是理解并能融汇贯通,灵活使用。对于老师讲的新概念,应抓住关键字眼,变换角度去理解。
数学复习方法学霸分享
1、重点练习几种类型的题目
不要钻偏题、怪题、过难题的牛角尖,根据平时做套卷时的感受,多练习以下几个类型的题目。
(1)初看没有思路,但分析后能顺利做出的。通过对这类问题的练习,能够使我们对题目的考点和重点更熟悉,提高建立思路的`速度和切入点的准确度,让我们能在考试中留出更多时间来处理后面难度高、阅读量大的综合题。
(2)自己经常出错的中档题。中档题在中考中每年的考查内容都差不多,题目位置也相对固定,属于解决了一个板块就能得到相应版块分数的类型。在中档题的某个题型经常出错说明对这部分内容的基本概念和常用方法理解不到位。通过练习,多总结这类题目的解题思路和技巧,把不稳定的得分变成到手的分数。中档题难度一般不会太高,所以对于自己薄弱的中档题进行突击练习一般都会有很好的效果。
(3)基础相对薄弱的同学也应该做一些常考的题目类型。比如圆的切线的判定以及与圆相关的线段计算、一次函数和反比例函数的综合、二元一次方程整数根问题等,通过练习,进一步提高我们解决这些问题的熟练度
2、学会看错题的正确方式
大部分学生都有错题本,在复习时看错题本,巩固自己的错误是不错的复习方式,但在看错题时一定要杜绝连题目带答案一起顺着看下来的方式。尽量能够将答案挡住,自己再尝试做一遍,如果做的过程中遇到问题再去看答案,并做好标注,过两天再试做一遍,争取能在期末考试前将之前的错题整体过两到三遍、加深印象。
3、认真研究每道题目的考点
做题时,我们心中要对相应题目所对应的考点有所了解,比如填空题中如果出现几何问题,主要是对图形基本性质和面积的考察,而很少考到全等三角形的证明(尺规作图写依据除外),所以我们在填空题中看到几何问题,就不用从全等方面找突破口,而是更多地注重图形的基本性质。比如平行四边形对角线互相平分、等腰三角形三线合一等。
4、尽量避免只看不算
很多同学在复习时不喜欢动笔,觉得自己看明白了就行,但俗话说“眼过千遍不如手过一遍”,不去实际操作只是看一遍题目,对题目解法和思路的印象其实是很低的。而且在计算过程中还能锻炼我们的计算能力,提高解题速度和准确性。许多同学在写证明题时很不熟练,逻辑不顺畅,也是由于平时对书写的不重视,应该趁着期末考试前的时间,多练练书写。
学好数学要重视“四个依据”是什么
读好一本教科书——它是教学、考试的主要依据;
记好一本笔记——它是教师多年经验的结晶;
做好一本习题集——它是知识的拓宽;
记好一本心得笔记——它是你自己的知识。
-
范文模板网小编为您推荐解析几何知识点专题,欢迎访问:解析几何知识点