范文模板网 >地图 >工作总结 >

不等式解法教案

不等式解法教案

时间:2025-05-09 作者:范文模板网

相关推荐

作为一位兢兢业业的人民教师,就难以避免地要准备教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。你知道什么样的教学设计才能切实有效地帮助到我们吗?以下是小编为大家收集的一元一次不等式教学设计,仅供参考,希望能够帮助到大家。

不等式解法教案 篇1

一、内容与内容解析

(一)内容

一元一次不等式组的概念及解法

(二)内容解析

上节课学习了一元一次不等式,知道了一元一次不等式的有关概念及解法,本节课主要是学习一元一次不等式组及其解法,这是学习利用一元一次不等式组解决实际问题的关键。教材通过一个实例入手,引出要解决的问题,必须同时满足两个不等式,让学生经历通过具体问题抽象出不等式组的过程,进而通过一元一次不等式来类推学习一元一次不等式组、一元一次不等式组解集、解一元一次不等式组这些概念。学习不等式组时,我们可以类比方程组、方程组的解来理解不等式组、不等式组的解集的概念。求不等式组的解集时,利用数轴很直观,这是一种数与形结合的思想方法,不仅现在有用,今后我们还会有更深的体验,基于以上的分析,本节课的'教学重点:一元一次不等式组的解法。

二、目标及目标解析

(一)目标

(1)理解一元一次不等式组、一元一次不等式组的解集等概念。

(2)会解一元一次不等式组,并会用数轴确定解集。

(二)目标解析

达到目标(1)的标志是:学生能说出一元一次不等式组的特征。

达到目标(2)的标志是:学生能解一元一次不等式组,能在数轴上确定不等式组的解集,并获得解一元一次不等式组的步骤。

三、教学问题

诊断分析通过前面的学习,学生已经掌握一元一次不等式的概念及解法,但是对于学生用数轴来表示不等式组的解集时还不够熟练,理解还不够深刻。本节课的教学难点:在数轴上找公共部分,确定不等式组的解集。

四、教学过程设计

(一)提出问题形成概念

问题:用每分钟可抽30吨水的抽水机来抽污水管道里的积存污水,估计积存的污水超过1200吨而不足1500吨,那么将污水抽完所用的时间的范围是什么?设问(1):依据题意,你能得出几个不等关系?设问(2):设抽完污水所用的时间还是范围?

小组讨论,交流意见,再独立设未知数,列出所用的不等关系。教师追问(1):类比方程组的概念,说出什么是一元一次不等式组?怎样表示?学生自学概念,说出表示方法。教师追问(2):类比方程组的解怎样确定不等式组中x的取值范围?学生经过小组讨论,老师点拨:不等式组中各个不等式解集的公共部分就是不等式组x的取值范围。教师追问(3):怎样解不等式,并用数轴表示解集?学生独立完成。教师追问(4):通过数轴,怎样得出不等式组的解集?学生独立完成,老师点评教师追问(5):什么是一元一次不等式组的解集?什么是解一元一次不等式组?学生自学概念。

设计意图:培养学生独立思考、合作交流意识,提高学生的观察、分析、猜测、概括和自学能力。并且渗透类比思想,得出一元一次不等式组以及其解集的概念,利用数轴的直观理解不等式解集的意义。

(二)解法探讨步骤归纳例1解下列不等式组

学生尝试独立解不等式组,老师强调规范格式

设问1:当两个不等式的解集没有公共部分,表示什么意思?

设问2:解一元一次不等式组的一般步骤是什么?

学生总结归纳,老师适当补充,得出解一元一次不等式组的一般步骤是:

(1)求每个不等式的解集;

(2)利用数轴找出各个不等式的解集的公共部分;

(3)写出不等式组的解集。

设计意图:初步感受解一元一次不等式组的方法和步骤。

(三)应用提高深化认知

例2 x取那些整数值时,不等式5x+2>3(x-1)与≤都成立?

设问1:不等式都成立表示什么意思?小组讨论

设问2:要求x取哪些整数值,要先解决什么问题?学生先合作交流,再独立解不等式组设问3。怎样取值?

学生在不等式组的解集范围内,取整数值。老师强调即求不等式组的特殊解。

设计意图:通过例2可以让学生构建不等式组,并解出不等式组,同时根据解集求出不等式组的特殊解,这是对学生解不等式组的一次提高训练。

(四)归纳总结反思提高

教师与学生一起回顾本节课所学主要内容,并请学生回答以下问题。

(1)什么是一元一次不等式组?什么是一元一次不等式组的解集?

(2)解一元一次不等式组的一般步骤?

(3)一元一次不等式组解集的一般规律是什么?

设计意图:通过问题归纳总结本节课所学的主要内容。

(五)布置作业课外反馈教科书习题9第1,2,3题

设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整。

不等式解法教案 篇2

一、教学目标

【知识与技能】

掌握求解一元二次不等式的简单方法,能正确求解一元二次不等式的解集。

【过程与方法】

在探究一元二次不等式的解法的过程中,提升逻辑推理能力。

【情感、态度与价值观】

感受数学知识的前后联系,提升学习数学的热情。

二、教学重难点

【重点】一元二次不等式的解法。

【难点】一元二次不等式的解法的探究过程。

三、教学过程

(一)导入新课

回顾一元二次不等式的一般形式,组织学生举例一些简单的一元二次不等式。

提问:如何求解?引出课题。

(二)讲解新知

结合课前回顾的一元二次不等式的一般形式,对比之前所学内容,引导学生发现其与一元二次方程和二次函数的共同特点。

不等式解法教案 篇3

教学内容

3.2一元二次不等式及其解法

三维目标

一、知识与技能

1.巩固一元二次不等式的解法和解法与二次函数的关系、一元二次不等式解法的步骤、解法与二次函数的关系两者之间的区别与联系;

2.能熟练地将分式不等式转化为整式不等式(组),正确地求出分式不等式的解集;

3.会用列表法,进一步用数轴标根法求解分式及高次不等式;

4.会利用一元二次不等式,对给定的与一元二次不等式有关的问题,尝试用一元二次不等式解法与二次函数的有关知识解题.

二、过程与方法

1.采用探究法,按照思考、交流、实验、观察、分析得出结论的方法进行启发式教学;

2.发挥学生的主体作用,作好探究性教学;

3.理论联系实际,激发学生的学习积极性.

三、情感态度与价值观

1.进一步提高学生的运算能力和思维能力;

2.培养学生分析问题和解决问题的能力;

3.强化学生应用转化的数学思想和分类讨论的数学思想.

教学重点

1.从实际问题中抽象出一元二次不等式模型.

2.围绕一元二次不等式的解法展开,突出体现数形结合的思想.

教学难点

1.深入理解二次函数、一元二次方程与一元二次不等式的关系.

教学方法

启发、探究式教学

教学过程

复习引入

师:上一节课我们通过具体的问题情景,体会到现实世界存在大量的不等量关系,并且研究了用不等式或不等式组来表示实际问题中的不等关系。回顾下等比数列的性质。

生:略

师:某同学要把自己的计算机接入因特网,现有两种ISP公司可供选择,公司A每小时收费1.5元(不足1小时按1小时计算),公司B的收费原则是第1小时内(含恰好1小时,下同)收费1.7元,第2小时内收费1.6元以后每小时减少0.1元(若用户一次上网时间超过17小时,按17小时计算)那么,一次上网在多少时间以内能够保证选择公司A的上网费用小于等于选择公司B所需费用。

学生自己讨论

点题,板书课题

新课学习

1.一元二次不等式

只有一个未知数,并且未知数的最高次数是2的不等式。

2.三个“二次”之间的关系及一元二次不等式的解法

师在前面我们已经学习过一元二次不等的解法,发现一元二次方程及对应的二次函数有关系,那么同学们课本打开到p77填表格。

生略

师学生讨论归纳出解一元二次不等式的步骤

一看:看二次项系数的正负,并且变形为

二算:,判断正负,有根则求并画出对应的函数图象

三写:写出原不等式的解集

练习反馈

[例题剖析]

例1解下列不等式

(1)(2)

(3)(4)

(5)(6)

课本80页练习

例2已知不等式的解集为试解不等式

变式:

已知

课堂

小结

1.三个“二次的关系”

2.解二次不等式的步骤

作业布置

课本第80页习题3.2A组第1.2.4题B组1

练习调配

设计42页全做,43页例1例2随堂练习2.3,4,5测评1、3、4、5、6、7、8、

不等式解法教案 篇4

【教学目标】:

1、知识目标:能进一步熟练的解一元一次不等式,会从实际问题中抽象出数学模型,

会用一元一次不等式解决简单的实际问题。

2、能力目标:通过观察、实践、讨论等活动,积累利用一元一次不等式解决实际问题

的经验,提高分类考虑、讨论问题的能力,感知方程与不等式的内在联系,体会不等式和方程同样都是刻画现实世界数量关系的重要模型

3、情感目标:在积极参与数学学习活动的过程中,形成实事求是的态度和独立思考的习

惯;学会在解决问题时,与其他同学交流,培养互相合作精神。

【重点难点】:

重点:一元一次不等式在实际问题中的应用。 难点:在实际问题中建立一元一次不等式的数量关系。

关键:突出建模思想,刻画出数量关系,从实际中抽象出数量关系。注意问题中隐含的

不等量关系,列代数式得到不等式,转化为纯数学问题求解。

【教学过程】: 创设情境,研究新知

这个周末我们要去杜氏旅游渡假村,为此我们要做两个准备:先选择一家旅行社,然后购买一些必需的旅游用品。在这个过程中,我们会碰到一些问题,看同学们能不能用数学知识来解决。

问题1:中国旅行社的原价是每人100元,可以给我们打7。7折;蓝天旅行社的原价和他们相同,但可以三人免费,并且其他人费用打8折;根据我们的实际情况,要选择哪一家比较省钱?

(从生活中的问题入手,激发学生探究问题的兴趣,这是一个最优方案的选择问题,具有一定的开放性和探索性,解这类问题,一般要根据题目的条件,分别计算结果,再比较、择优。本题通过问题设置,培养学生分析题意的能力,分析题中相关条件,找到不等关系。让学生充分进行讨论交流,在活动中体会不等式的应用。在分析问题的过程中运用了“求差值比较大小”这一方式,使学生又掌握了一种新的比较两个量之间大小的方式;同时体会到分类考虑问题的思考方式) 观察探讨,实际操作

选定了旅行社以后,咱们要去购物了,正好商店为了吸引顾客在举行优惠打折活动

问题2:

甲、乙两商店以同样价格出售同样的商品,并且又各自推出不同的优惠方案: 甲店累计购买100元商品后,再购买的商品按原价的90%收费;在乙店累计购买50元商品后,再购买的商品按原价的95%收费。我们选择商店购物才获得更大优惠? 分析:这个问题较复杂,从何处入手呢? 甲商店优惠方案的起点为购物款达___元后; 乙商店优惠方案的.起点为购物款过___元后。 启发提问:我们是否应分情况考虑?可以怎样分情况呢?

(1)如果累计购物不超过50元,则在两店购物花费有区别吗?

(2)如果累计购物超过50元,则在哪家商店购物花费小?为什么?

关键是对于第二个问题的分类,鼓励学生大胆猜想,对研究的问题发表见解,进行探索、合作与交流,涌现出多样化的解题思路.教师及时予以引导、归纳和总结,让学生感知不等式的建模,在活动中体会不等式的实际作用。

小结:用一元一次不等式知识解决实际问题的基本步骤有哪些?实际问题 从关键语句中找条件

符号表达

1、 根据设置恰当的未知数

2、用代数式表示各过程量

3、寻找问题中的不等关系列出不等式

解不等式 注意不等式基本性质的运用

(本环节我设置学生分组合作共同讨论,由学生代表发言,互相补充,最后总结。学生会体会到本节课我们不仅仅是解了如何分析问题中的不等关系列出不等式,也尝试了利用分类的方法考虑问题,同时还学到了一种新的比较两个量大小的方法:求差比较法。体现了新课标提倡的学生主动,师生互动,生生互动的新的总结方式。) 预留悬念 要出游旅行,目的地的天气情况也是我们很关注的问题,下节课咱们再一起看看杜氏旅游渡假村所在地的天气如何,大家可以自己先去查查相关的资料。

(抛出学生感兴趣的问题,为下节课的教学内容打下了伏笔,做了很好的铺垫)

教学设计:

一元一次不等式的实际应用是人教版七年级下册第九章第二小节内容,是在学习了一元一次不等式的性质及其解法、用一元一次方程解决实际问题等知识的基础上,把实际问题和一元一次不等式结合在一起,既是对已学知识的运用和深化,又为下节一元一次不等式组的学习奠定基础,具有承上启下的作用;同时通过本节的学习,向学生渗透“求差比较两个量的大小”的方法,和分类考虑问题的探究方式,可以提高学生分析、解决问题的能力。

本节课的教学设计从以下几个方面进行设置:

1。、教学内容:

本节课的教学内容大多以实际生活中的问题情景呈现出来,给学生以亲切感,可以提高学生的学习兴趣,让学生感受到数学来源于生活,学生通过合作、努力解决问题,体会到学习数学的价值。

2、 组织形式:

本节课以开放式的课堂形式组织教学,让学生进行合作学习,共同操作与探索、共同研究、解决问题。由于本节教学内容的特点,教师无须过多讲解,只需引导、组织学生活动,有意识的让学生主动去观察、比较、分类、归纳,积极思考,并真正参与到学生的讨论之中。这节课成功与否,不在于教师的讲解本领,而在于调动、启发学生、提出问题的水平以及激起学生求知欲、培养他们学习数学的主动性的艺术高低。

3、 学习方式:

动手实践、自主探索是学习数学的重要方式,因此本节课改变了过去接受式的学习方式,学生不是等待知识的传递,而是主动的参与到学习活动中,成为学习的主体。

4、 评价方式:

教师在教学中关注的是学生对待学习的态度是否积极,关注的是学生思考。

不等式解法教案 篇5

教学目标:

(知识与技能,过程与方法,情感态度价值观)

(一)教学知识点

1.一元一次不等式与一次函数的关系.

2.会根据题意列出函数关系式,画出函数图象,并利用不等关系进行比较.

(二)能力训练要求

1.通过一元一次不等式与一次函数的图象之间的结合,培养学生的数形结合意识.

2.训练大家能利用数学知识去解决实际问题的能力.

(三)情感与价值观要求

体验数、图形是有效地描述现实世界的重要手段,认识到数学是解决问题和进行交流的重要工具,了解数学对促进社会进步和发展人类理性精神的作用.

教学重点

了解一元一次不等式与一次函数之间的关系.

教学难点

自己根据题意列函数关系式,并能把函数关系式与一元一次不等式联系起来作答.

教学过程

创设情境,导入课题,展示教学目标

1.张大爷买了一个手机,想办理一张电话卡,开米广场移动通讯公司业务员对张大爷介绍说:移动通讯公司开设了两种有关神州行的通讯业务:甲类使用者先缴15元基础费,然后每通话1分钟付话费0.2元;乙类不交月基础费,每通话1分钟付话费0.3元。你能帮帮张大爷选择一种电话卡吗?

2.展示学习目标:

(1)、理解一次函数图象与一元一次不等式的关系。

(2)、能够用图像法解一元一次不等式。

(3)、理解两种方法的关系,会选择适当的方法解一元一次不等式。

积极思考,尝试回答问题,导出本节课题。

阅读学习目标,明确探究方向。

从生活实例出发,引起学生的好奇心,激发学生学习兴趣

学生自主研学

指出探究方向,巡回指导学生,答疑解惑

探究一:一元一次不等式与一次函数的关系。

问题1:结合函数y=2x-5的图象,观察图象回答下列问题:

(1) x取何值时,2x-5=0?

(2) x取哪些值时, 2x-5>0?

(3) x取哪些值时, 2x-5<0?

(4) x取哪些值时, 2x-5>3?

问题2:如果y=-2x-5,那么当x取何值时,y>0 ? 当x取何值时,y<1 ?

你是怎样求解的?与同伴交流

让每个学生都投入到探究中来养成自主学习习惯

小组合作互学

巡回每个小组之间,鼓励学生用不同方法进行尝试,寻找最佳方案。答疑展示中存在的问题。

探究二:一元一次不等式与一次函数关系的简单应用。

问题3.兄弟俩赛跑,哥哥先让弟弟跑9 m,然后自己才开始跑,已知弟弟每秒跑3 m,哥哥每秒跑4 m,列出函数关系式,画出函数图象,观察图象回答下列问题:

(1)何时哥哥分追上弟弟?

(2)何时弟弟跑在哥哥前面?

(3)何时哥哥跑在弟弟前面?

(4)谁先跑过20 m?谁先跑过100 m?

你是怎样求解的.?与同伴交流。

问题4:已知y1=-x+3,y2=3x-4,当x取何值时,y1>y2?你是怎样做的?与同伴交流.

让学生体会数形结合的魅力所在。理解函数和不等式的联系。

精讲点拨

移动通讯公司开设了两种长途通讯业务:全球通使用者先缴50元基础费,然后每通话1分钟付话费0.4元;神州行不交月基础费,每通话1分钟付话费0.6元。若设一个月内通话x分钟,两种通讯方式的费用分别为y1元和y2元,那么 (1)写出y1、y2与x之间的函数关系式; (2)在同一直角坐标系中画出两函数的图象;(3)求出或寻求出一个月内通话多少分钟,两种通讯方式费用相同; (4)若某人预计一个月内使用话费200元,应选择哪种通讯方式较合算?

在共同探究的过程中加强理解,体会数学在生活中的重大应用,进行能力提升。

提高学生应用数学知识解决实际问题的能力

达标检测

展示检测内容

积极完成导学案上的检测内容,相互点评。

反馈学生学习效果

知识与收获

引导学生归纳探究内容

学生回顾总结学习收获,交流学习心得。

学会归纳与总结

布置作业

教材P51.习题2.6知识技能1;问题解决2,3.

板书设计

§2.5 一元一次不等式与一次函数(一)

一、学习与探究:

1.一元一次不等式与一次函数之间的关系;

2.做一做(根据函数图象求不等式);

3.试一试(当x取何值时,y>0);

4.议一议

二、精讲点拨:

三、知识与收获:

四、课后作业:

不等式解法教案 篇6

各位评委、各位专家,大家好!今天,我说课的内容是人民教育出版社全日制普通高级中学教科书(必修)《数学》第一章第五节“一元二次不等式解法”。

下面从教材分析、教学目标分析、教学重难点分析、教法与学法、课堂设计、效果评价六方面进行说课。

一、教材分析

(一)教材的地位和作用

“一元二次不等式解法”既是初中一元一次不等式解法在知识上的延伸和发展,又是本章集合知识的运用与巩固,也为下一章函数的定义域和值域教学作铺垫,起着链条的作用。同时,这部分内容较好地反映了方程、不等式、函数知识的内在联系和相互转化,蕴含着归纳、转化、数形结合等丰富的数学思想方法,能较好地培养学生的观察能力、概括能力、探究能力及创新意识。

(二)教学内容

本节内容分2课时学习。本课时通过二次函数的图象探索一元二次不等式的解集。通过复习“三个一次”的关系,即一次函数与一元一次方程、一元一次不等式的关系;以旧带新寻找“三个二次”的关系,即二次函数与一元二次方程、一元二次不等式的关系;采用“画、看、说、用”的思维模式,得出一元二次不等式的解集,品味数学中的和谐美,体验成功的乐趣。

二、教学目标分析

根据教学大纲的要求、本节教材的特点和高一学生的认知规律,本节课的教学目标确定为:

知识目标——理解“三个二次”的关系;掌握看图象找解集的方法,熟悉一元二次不等式的解法。

能力目标——通过看图象找解集,培养学生“从形到数”的转化能力,“从具体到抽象”、“从特殊到一般”的归纳概括能力。

情感目标——创设问题情景,激发学生观察、分析、探求的学习激情、强化学生参与意识及主体作用。

三、重难点分析

一元二次不等式是高中数学中最基本的不等式之一,是解决许多数学问题的重要工具。本节课的重点确定为:一元二次不等式的解法。

要把握这个重点。关键在于理解并掌握利用二次函数的图象确定一元二次不等式解集的方法——图象法,其本质就是要能利用数形结合的思想方法认识方程的解,不等式的解集与函数图象上对应点的横坐标的内在联系。由于初中没有专门研究过这类问题,高一学生比较陌生,要真正掌握有一定的难度。因此,本节课的难点确定为:“三个二次”的关系。要突破这个难点,让学生归纳“三个一次”的关系作铺垫。

四、教法与学法分析

(一)学法指导

教学矛盾的主要方面是学生的学。学是中心,会学是目的。因此在教学中要不断指导学生学会学习。本节课主要是教给学生“动手画、动眼看、动脑想、动口说、善提炼、勤钻研”的研讨式学习方法,这样做增加了学生自主参与,合作交流的机会,教给了学生获取知识的途径、思考问题的方法,使学生真正成了教学的主体;只有这样做,才能使学生“学”有新“思”,“思”有新“得”,“练”有新“获”,学生也才会逐步感受到数学的美,会产生一种成功感,从而提高学生学习数学的兴趣;也只有这样做,课堂教学才富有时代特色,才能适应素质教育下培养“创新型”人才的需要。

(二)教法分析

本节课设计的指导思想是:现代认知心理学——建构主义学习理论。

建构主义学习理论认为:应把学习看成是学生主动的建构活动,学生应与一定的知识背景即情景相联系,在实际情景下进行学习,可以使学生利用已有知识与经验同化和索引出当前要学习的新知识,这样获取的知识,不但便于保持,而且易于迁移到陌生的问题情景中。

本节课采用“诱思引探教学法”。把问题作为出发点,指导学生“画、看、说、用”。较好地探求一元二次不等式的解法。

五、课堂设计

本节课的教学设计充分体现以学生发展为本,培养学生的观察、概括和探究能力,遵循学生的认知规律,体现理论联系实际、循序渐进和因材施教的教学原则,通过问题情境的创设,激发兴趣,使学生在问题解决的探索过程中,由学会走向会学,由被动答题走向主动探究。

(一)创设情景,引出“三个一次”的关系

本节课开始,先让学生解一元二次方程x2-x-6=0,如果我把“=”改成“”则变成一元二次不等式x2-x-60让学生解,学生肯定感到很突然。但是“思维往往是从惊奇和疑问开始”,这样直奔主题,目的在于构造悬念,激活学生的思维兴趣。

为此,我设计了以下几个问题:

1、请同学们解以下方程和不等式:

①2x-7=0;②2x-70;③2x-70

学生回答,我板书。

2、我指出:2x-70和2x-70的解实际上只需利用不等式基本性质就容易得到。

3、接着我提出:我们能否利用不等式的基本性质来解一元二次不等式呢?学生可能感到很困惑。

4、为此,我引入一次函数y=2x-7,借助动画从图象上直观认识方程和不等式的解,得出以下三组重要关系:

①2x-7=0的解恰是函数y=2x-7的图象与x轴

交点的横坐标。

②2x-70的解集正是函数y=2x-7的图象

在x轴的上方的点的横坐标的集合。

③2x-70的解集正是函数y=2x-7的图象

在x轴的下方的点的横坐标的集合。

三组关系的得出,实际上让学生找到了利用“一次函数的图象”来解一元一次方程和一元一次不等式的方法。让学生看到了解决一元二次不等式的希望,大大激发了学生解决新问题的兴趣。此时,学生很自然联想到利用函数y=x2-x-6的图象来求不等式x2-x-60的解集。

(二)比旧悟新,引出“三个二次”的关系

为此我引导学生作出函数y=x2-x-6的图象,按照“看一看 说一说 问一问”的思路进行探究。

看函数y=x2-x-6的图象并说出:

①方程x2-x-6=0的解是

x=-2或x=3 ;

②不等式x2-x-60的解集是

{x|x-2,或x3};

③不等式x2-x-60的解集是

{x|-23}。

此时,学生已经冲出了困惑,找到了利用二次函数的图象来解一元二次不等式的方法。

学生沉浸在成功的喜悦中,不妨趁热打铁问一问:如果把函数y=x2-x-6变为y=ax2+bx+c(a0),那么图象与x轴的位置关系又怎样呢?(学生回答:△0时,图象与x轴有两个交点;△=0时,图象与x轴只有一个交点;△0时,图象与x辆没有交点。)请同学们讨论:ax2+bx+c0与ax2+bx+c0的解集与函数y=ax2+bx+c的图象有怎样的关系?

(三)归纳提炼,得出“三个二次”的关系

1、引导学生根据图象与x轴的相对位置关系,写出相关不等式的解集。

2、此时提出:若a0时,怎样求解不等式ax2+bx+c0及ax2+bx+c0?(经讨论之后,有的学生得出:将二次项系数由负化正,转化为上述模式求解,教师应予以强调;也有的学生提出画出相应的二次函数图象,根据图象写出解集,教师应给予肯定。)

(四)应用新知,熟练掌握一元二次不等式的解集

借助二次函数的图象,得到一元二次不等式的解集,学生形成了感性认识,为巩固所学知识,我们一起来完成以下例题:

例1、解不等式2x2-3x-20

解:因为Δ0,方程2x2-3x-2=0的解是

x1= ,x2=2

所以,不等式的解集是

{ x| x ,或x2}

例1的解决达到了两个目的:一是巩固了一元二次不等式解集的应用;二是规范了一元二次不等式的解题格式。

下面我们接着学习课本例2。

例2 解不等式-3x2+6x2

课本例2的出现恰当好处,一方面突出了“对于二次项系数是负数(即a0)的一元二次不等式,可以先把二次项系数化为正数,再求解”;另一方面,学生对此例的解答极易出现写错解集(如出现“或”与“且”的错误)。

通过例1、例2的解决,学生与我一起总结了解一元二次不等式的一般步骤:一化正—二算△—三求根—四写解集。

例3 解不等式4x2-4x+10

例4 解不等式-x2+2x-30

分别突出了“△=0”、“△0”对不等式解集的影响。这两例由学生练习,教师巡视、指导,讲评学生完成情况,寻找学生中的闪光点,给予热情表扬。

4道例题,具有典型性、层次性和学生的可接受性。为了避免学生学后“一团乱麻”、“一盘散沙”的局面,我和学生一起总结。

(五)总结

解一元二次不等式的“四部曲”:

(1)把二次项的系数化为正数

(2)计算判别式Δ

(3)解对应的一元二次方程

(4)根据一元二次方程的根,结合图像(或口诀),写出不等式的解集。概括为:一化正→二算Δ→三求根→四写解集

(六)作业布置

为了使所有学生巩固所学知识,我布置了“必做题”;又为学有余力者留有自由发展的空间,我布置了“探究题”。

(1)必做题:习题1.5的1、3题

(2)探究题:①若a、b不同时为零,记ax2+bx+c=0的解集为P,ax2+bx+c0的解集为M,ax2+bx+c0的解集为N,那么P∪M∪N=______________;②已知不等式(k2+4k-5)x2+4(1-k)x+30的解集是R,求实数k的取值范围。

(七)板书设计

一元二次不等式解法(1)

五、教学效果评价

本节课立足课本,着力挖掘,设计合理,层次分明。以“三个一次关系→三个二次关系→一元二次不等式解法”为主线,以“从形到数,从具体到抽象,从特殊到一般”为灵魂,以“画、看、说、用”为特色,把握重点,突破难点。在教学思想上既注重知识形成过程的教学,还特别突出学生学习方法的指导,探究能力的训练,创新精神的培养,引导学生发现数学的美,体验求知的乐趣。

不等式解法教案 篇7

〖教学目标〗

1、理解一元一次不等式组的概念

2、理解不等式组的解的概念

3、会解由两个一元一次不等式组成的不等式组,并会用数轴确定解

4、培养学生类比推理能力

〖教学重点与难点〗

教学重点:一元一次不等式组的解法

教学难点:例2较为复杂,几乎包括了解一元一次不等式的全部步骤,是本节教学的难点,用数轴表示一元一次不等式组的解也是难点。

〖教学过程〗

一.引入

1.想一想:某单位从超市购买了墨水笔和圆珠笔共15桶,所付金额超过570元,但不到580元。已知这两种笔每桶的单价为圆珠笔34.90元/支,墨水笔44.90元/支。设购买圆珠笔X桶,你能列出几个不等式?

2.学生活动:找出已知条件,列出所有不等关系式,互相讨论,类推概念,鼓励学生通过观察,分析,补充解决问题。

3.最后教师总结两个不等式。

如设购买圆珠笔的桶数为X,则:

二.新课

1.一元一次不等式组:一般地,由几个同一个未知数的一元一次不等式所组成的一组不等式,叫做一元一次不等式组。像上面就是一元一次不等式组,再

例如:

都是一元一次不等式组

2.不等式组解的概念:组成不等式组的各个不等式的解的公共部分就是不等式组的解.当它们没有公共部分时.我们称这个不等式组无解.

3.做一做:

例1.解一元一次不等式组

解:解不等式①,

得:

X>-1

解不等式②,

得:

X≤6

②两个不等式的解表示在数轴上,如下图:

-1

6

所以原不等式组的解是-1

4.应用拓展:解由两个一元一次不等式组成的不等式组,在取各个不等式的解公共部分时,有几种不同情况吗?

若a

用数轴试一试.

(设a

一般由两个一元一次不等式组成的不等式组由四种基本类型确定,它们的'解集、数轴表示如下表

一元一次

不等式组

解集

图示

口诀

x>a

x>b

x>b

大大取大

x

x

x

小小取小

x>a

x

a

比小大,比大小,中间找

x

x>b

无解

比小小,比大大,解不了(无解)

5.尝试反馈:试一试,利用数轴分别求出满足下列各组不等式组的x值的公共部分:

6.探索较复杂的不等式组的解法:

例2.

解一元一次不等式组

解:由不等式①,去扩号得

3-5X>X-4X+2

移项,整理得

-2X>-1

所以X<

解不等式②,去分母得

3X-2>10-2X

移项,整理得

5X>12

所以X>

把①,②两个不等式的解表示在数轴上

1

2

所以原不等式组无解

7.通过范例,帮助学生总结解一元一次不等式组的步骤:

(1)依次解各个一元一次不等式

(2)把各个一元一次不等式的解分别表示在同一数轴上

(3)根据解在数轴上的表示确定不等式组的解

三.巩固

(学生活动,与同伴交流自己的问题和解决问题的过程)

1.解下列一元一次不等式组:

2.分别求出本节开头问题中购买墨水笔和圆珠笔的桶数

四.归纳

1.学生谈本节课的收获:优等生谈学到什么知识,上进生谈体会;

2.教师小结:这节课主要学习了一元一次不等式组及不等式组的解的有关概念,要求会解有两个一元一次不等式组成的一元一次不等式组,并会用数轴确定解集;也可以利用口诀“大大取大,小小取小,比小大比大小取中间,比大大比小小无解”来求不等式组的解。

五.布置作业

不等式解法教案 篇8

教学目标:

1、了解一元一次不等式的概念。

2、能类比一元一次方程的解法步骤解一元一次不等式,并把解集在数轴上表示。

3、体会自主与合作学习的快乐,体会数学学习中类比的思想方法。

教学重点:

一元一次不等式的概念及解法步骤。

教学难点:

解一元一次不等式。

教学流程:

一:情境诱导:一件商品x元,买50件这样的'商品总共花了350元,则可得一元一次方程为:。若买50件这样的商品总花费不高于350元,则可得到怎样的式子?(师问:什么叫一元一次方程,后面的这个式子是一元一次方程吗?那么这样的式子你能给起个名子吗?好,这就是咱们今天要研究的一元一次不等式!)

二:自学指导:

学生自学课本122——123页,并对照课本,找自学提纲中问题的答案;老师先做必要的板书准备,再到学生中巡视指导,了解学情,为展示归纳做准备。

附:自学提纲

1、什么叫做一元一次不等式?它有什么特征?你能举两个例子说明吗?

2、一般地,利用不等式的性质,采取与,就可以求出一元一次不等式的解集.

3.课本上例1中

1)题解答过程有哪几个步骤

(2)题又有哪几个步骤,由此你能总结出解一元一次不等式的步骤吗?

4.议一议,解一元一次不等式和解一元一次方程有什么相同点和不同点?

三、展示归纳

1.抽有问题的学生逐题展示自学提纲中的问题答案,学生说,老师板书,

2.发动学生进行评价、补充、完善,

3.老师根据每个题目的展示情况进行必要的强调;全部展示完毕后,老师强调定义和步骤,提请注意不等式两端乘除负数不等号反向。

四、变式练习:

1题口答,不仅要说出结果,还要说出理由;

2、3题逐题出示,学生先做,教师做必要的板书准备,再到学生中巡视指导,了解学情,然后抽有问题的学生展示,学生说,老师板书,发动学生进行评价、补充、完善,老师进行必要的强调。

1、下列不等式中,哪些是一元一次不等式?(1)4<5.1(2)5x+3<0(5)x>5

2、课本124页1题(1)(2)(3)(4)3、课本124页2题,

五:课堂小结:本节课你学到的知识有哪些?你认为有哪些重点要强调,哪些易错点应注意?六:作业:七:课后延伸:生活中的不等式应用很多,有时可以帮我们解决很多困难,下节课我们继续学习。

不等式解法教案 篇9

<title>从不同方向看</title>

教学目标

本节在介绍不等式的基础上,介绍了不等式的解集并用数轴表示,介绍了解简单不等式的方法,让学生进一步体会数形结合的作用。

知识与能力

1.使学生掌握不等式的解集的概念,以及什么是解不等式。

2.使学生育能够借助数轴将不等式的解集直观地表示出来,初步理解数形结合的思想。

过程与方法

1.通过回忆给学生介绍不等式的解集的概念。

2.教会学生怎样在数轴上表示不等式的解集。

情感、态度与价值观

1.通过反复的训练使学生认识到数轴的重要性,培养其数形结合的思想。

2.通过观察、归纳、类比、推断而获得不等式的解集与数轴上的点之间的关系,体验数学活动充满探索性与创造性。

教学重、难点及教学突破

重点

1.认识不等式的解集的概念。

2.将不等式的解集表示在数轴上。

难点

学生对不等式的解是一个集合可能会不太理解。

教学突破

由于受方程思想的影响,学生对不等式的解集的接受和理解可能会有一定的困难,建议教师能结合简单的不等式和实际问题让学生体会不等式的解可以是一个集合,并组织学生讨论举例,加深理解。

另外,应在本节的过程中让学生能理解在数轴上表示不等式的解集,让他们熟悉数形结合的思想。

教学步骤

一、新课导入

1.回顾提问:同学们,我们已经学习了不等式。现在我们一起回顾一下什么是不等式,以及有关数轴的知识。

学生用自己的语言描述不等式的定义,并基本说出数轴的三要素是:原点、正方向、单位长度。能将有理数在数轴上表示出来。

2.创设情景:我们现在知道了不等式的解不唯一,那么我们如何将不等式的解全部表示出来呢?这就是我们这节课要解决的问题。

二、不等式的解集

1.讲述不等式的解集的定义,引导学生观察不等式x+2>5,并说出-3 、-2 、 3.5 、 7中哪些是不等式的解,哪些不是?-3 、-2不是不等式x+2>5的`解,3.5 、 7是不等式的解。

2.给出“解不等式”的概念,并就上述例题由不完全归纳法给出不等式x+2>5的解集是x>3 。

3.将x>3在数轴上表示出来,并以此图为例讲述在数轴上表示基本不等式的方法:

(1)在数轴上找到3;

(2)向右表示比3大的点;

(3)空心点表示不含有3。

让学生自己动手画出x ≤ 3,并找学生上台板演。

4.就学生在黑板上的板演,指出画图应注意的事项,并让学生观察前后两图的区别。

通过对比两图的不同,发现区别是大于和小于导致图上所取的方向不同,有等号和没等号导致空心和实心的区别。

5.给出适当的例题,巩固本节内容。

本课总结

这节课主要学习了什么是不等式的解集,并教学生在数轴上表示不等式的解集,体会数形结合的思想。

教学探讨与反思

为了提高数学课的教学效果,教师必须使课堂教学过程符合学生的认知规律,并让学生参与到课堂教学活动中来,使他们真正成为课堂教学的主体。教师对课堂教学的设计,应着眼在为学生个性品质的优化创设最佳课堂教学环境。教师引导学生参与的是数学思维活动。

不等式解法教案 篇10

教学目标

1. 使学生掌握不等式的三条基本性质;

2. 培养学生观察、分析、比较的能力,提高他们灵活地运用所学知识解题的能力.

教学重点和难点

重点:不等式的三条基本性质的运用.

难点:不等式的基本性质3的运用.

课堂教学过程设计

一、从学生原有的认知结构提出问题

1. 什么叫不等式?说出不等式的三条基本性质.

2. 当x取下列数值时,不等式1-5x<16是否成立?

3,-4,-3,4,2.5,0,-1.

3. 用不等式表示下列数量关系:

(1) x的3倍大于x的2倍与5的差;

(3)y的与x的的差小于2;

(2) y的一半与4的和是负数;

(4)5与a的4倍的差不是正数.

4. 按照下列条件写出仍然成立的不等式,并说明根据不等式的哪一条基本性质:

(1)m>n,两边都减去3;

(2)m>n,两边同乘以3;

(3)m>n,两边同乘以-3;

(4)m>n,两边同乘以-3;

(5)m>n,两边同乘以 .

(以上各题中,从第2题开始,用投影仪打在屏幕上.学生在回答上述问题时,如遇到困难,教师应做适当点拨)在学生回答完上述问题的基础上,教师指出:本节课我们将通过学习例题和练习,进一步巩固并熟练掌握不等式的基本性质,尤其是不等式基本性质。

二、讲授新课

例1 在下列各题横线上填入不等号,使不等式成立.并说明是根据哪一条不等式基本性质.

(1)若a–3<9,则a_____12;

(2)若-a<10,则a_____–10;

(3)若a>–1,则a_____–4;

(4)若-a>,则a_____0.

答:(1)a<12,根据不等式基本性质1.

(2)a>-10,根据不等式基本性质3.

(3)a>-4,根据不等式基本性质2.

(4)a<0,根据不等式基本性质3.

(在讲授本课时,应启发学和在添加不等号“>”或“<”时,要和题目中的已知条件进行对比,观察它是根据不等式的哪条基本性质,是怎样由已知条件变形得到的.同时还应强调在运用不等式基本性质3时,不等号要改变方向=

例2 已知,用a<0,“<”或“>”号填空:

(1)a+2_____2; (2)a-1_____–1; (3)3a_____0; (4)a-1______0; (5)a2 _______0; (6)a3______0; (7)a-1______0; (8)|a|______0。

答:(1)a+2<2,根据不等式基本性质1.

(2)a-1<-1,根据不等式基本性质1.

(3)因为3a,根据不等式基本性质2.

(4)->0,根据不等式基本性质3.

(5)因为a<0,两边同乘以a<0,由不等式基本性质3,得a2>0.

(6)因为a<0,两边同乘以a2>0,由不等式基本性质2,得a3<0。

(7)因为a<0,两边同加上-1,由不等式基本性质1,得a-1<-1.

又已知,-1<0,所以a-1<0.

(8)因为。a<0,所以a≠0,所以|a|>0.

(本例题除了进一步运用不等式的三条基本性质外,还涉及了一些旧的基础知识,如a<0表示a是负数;a>0表示a是正数;|a|是非负数.后面几个小题较灵活,条件由具体数字改为抽象的字母,这里字母代表正数还是代表负数是解决问题的关键)

例外 判断下列各题的推导是否正确?为什么?(投影)(请学生回答)

(1)因为7.5>5.7,所以-7.5<-5.7;

(2)因为a+8>4,,所以a>-4;

(3)因为4a>4b,所以a>b;

(4)因为a<b,所以<>'

(5)因为>-1,所以a>4;

(6)因为-1>-2,所以-a-1>-a-2;

(7)因为3>2,所以3a>2a.

答:

(1)正确,根据不等式基本性质3.

(2)正确,根据不等式基本性质1.

(3)正确,根据不等式基本性质2.

(4)不对,根据不等式基本性质3,应改为>;

(5)因为>-1,所以a>4

答:(1)正确,根据不等式基本性质3。

(2)正确,根据不等式基本性质1。

(3)正确,根据不等式基本性质2。

(4)不对,根据不等式基本性质3,应改为。

(5)不对,根据不等式基本性质5,应改为a<4。

(6)正确,根据不等式基本性质1。

(7)不对,应分情况逐一讨论。

当a>0时,3a>2a。(不等式基本性质2)

当a=0时,3a<2a。

当a<0时,3a<2a。(不等式基本性质3)

(当学生在回答本题的过程当中,当遇到困难或问题时,教师应做适当引导、启发、帮助)

三、课堂练习(投影)

1。按照下列条件,写出仍能成立的.不等式:

(1)由-2<-1,两边都加-a; (2)由-4x<0,两边都乘以-;

(3)由7>5,两边都乘以不为零的-a。

2?用“>”或“<”号填空:

(1)当a-b<0时,a______b: (2)当a<0,b<0时,ab_____0;

(3)当a<0,b<0时,ab____0; (4)当a>0,b<0时,ab____0;

(5)若a____0,b<0,则ab>0; (6)若<0,且b<0,则a_____0。

四、师生共同小结

在师生共同回顾本节课所学内容的基础上,教师指出:①在利用不等式的基本性质进行变形时,当不等式的两边都乘以(或除以)同一个字母,字母代表什么数是问题的关键,这决定了是用不等式基本性质2还是基本性质3,也就是不等号是否要改变方向的问题;②运用不等式基本性质3时,要变两个号,一个性质符号,另一个是不等号。

五、作业

1.根据不等式的基本性质,把下列不等式化成“x>a”或“x<a”的形式:

(1)x-1<0;

(2)x>-x+6;

(3)3x>7;

(4)-x<-3。

2.设a<b,用“>”或“>”号连接下列各题中的两个代数式:

(1)a-1,b-1;

(2)a+2,b+2; (3)2a,2b;

(4);

(5); (6)-b,-a。

3.用“>”号或“<”号填空:

(1)若a-b<0,则a_____b;

(2)若b<0,则a+b_____a;

(3)若a=0,则a+b_____b;

(4)若<0,则ab_____;

(5)b<a<2,则(a-2)(b-2)____0;(2-a)(2-b)____;(2-a)(a-b)。

不等式解法教案 篇11

教学目标:

了解一元一次不等式的概念,掌握一元一次不等式的解法。

教学重点

是掌握解一元一次不等式的步骤

教学难点

是必须切实注意遇到要在不等式两边都乘以(或除以)同一负数时,必须改变不等号的方向。

教学过程:

一、问题导入

复习:

1、不等式的基本性质有哪些?什么是一元一次方程?并举出两个例子。

2、观察不等式x+3<5与x<2,说明解x<2是x+3<5依据什么变形得到的?

3、解一元一次方程:6x+5=7-2x,目的是为了与下面所学的解一元一次不等式进行类比,找到它们的联系与区别。

二、指导自学,小组合作交流

请同学们根据以下提问进行自学,先个人思考,后小组合作学习。

1、观察下列不等式,说一说这些不等式有哪些共同特点?

(1)2x+5≥8(2)x+1≤—4(3)x<2(4)6—3x>43(x+1)≤0

观察上面不等式有哪些共同特点,让学生通过交流,再总结一元一次不等式的概念。老师板书定义。

2、让学生举出2或3个一元一次不等式的例子,小组交流。

3、让学生通过比较解一元一次方程:6x+5=7-2x的解法试解一元一次不等式:6x+5<7-2x,并将解集在数轴上表示出来。

4、思考:一元一次不等式与一元一次方程的解法有哪些类似之处?有什么不同?

5、解下列不等式,并把它们的解集在数轴上表示出来。

(1)3-x<2x+9(2)2-4(x-1)>3(x+2)-x

(3)(x-1)/3≥(2-x)/2+1

总结:解一元一次不等式的依据和解一元一次不等式的步骤。

三、互动交流,教师点拨

(一)、学生易出错的问题和注意的事项:

1、确定一个不等式是不是一元一次不等式,要抓住三个要点:左右两边都是整式,只有一个未知数,未知数的次数是1。

2、对于(1),让学生说明不等式3-x<2x+9的每一步变形的依据是什么,特别注意的是:解不等式的移项和解方程的移项一样。即移项要变号(培养学生运用类比的数学思想)。

3、不等式两边同时除以(-3)时,不等号的方向改变。

2、重点点拨(2)和(3),先让学生到黑板上板演。老师再讲评。

(2)易出错的地方是:去括号时漏乘,括号前是负号,去掉括号后括号里的项没变号,还有移项没有变号;(3)易出错的地方是:去分母时漏乘无分母的项。

3、归纳解一元一次不等式的步骤(与解一元一次方程的步骤类比):去分母,去括号,移项,合并同类项,系数化为1。(在系数化为1这一步要特别提醒学生注意当系数为负数时,要记住改变不等号的方向。)

四、巩固练习

1、判断下列不等式是不是一元一次不等式,为什么?

(1)2/x—3<5x+3

(2)5x+3<02="">x–1

(4)x(2x+1)

(5)X+2≥x

2、解下列不等式,并把它们的解集在数轴上表示出来

(1)3x–8<5x+12

(2)2(x–1)≥x+3

(3)x/5≥1+(x–3)/2

3、[思考]当x取何值时,代数式(x–2)/2的值比(3x+1)/3的值大?

小结:

(1)不等式两边同时除以负数时,不等号的方向要改变。

(2)注意去括号时不要漏乘,括号前是负号,去掉括号后括号里的项要变号,还有移项一定要变号

(3)去分母时不要漏乘无分母的项。

不等式解法教案 篇12

一、内容和内容解析

(一)内容

一元一次不等式的概念及解法

(二)内容解析

在初中阶段,不等式位于一次方程(组)之后,它是进一步探究现实世界数量关系的重要内容,不等式的研究从最简单的一元一次不等式开始,一元一次不等式及其相关概念是本章的基础知识,解任何一个代数不等式(组)最终都要化归为解一元一次不等式,因此解一元一次不等式是一项基本技能·另外,不等式解集在数轴上表示从形的角度描述了不等式的解集,并为解不等式组做了准备,本节内容是进一步学习其它不等式(组)的基础·解一元一次不等式与解一元一次方程在本质上是相同的,即依据不等式的性质,逐步将不等式化为xa或x

二、目标和目标的解析

(一)目标

(1)了解一元一次不等式的概念,掌握一元一次不等式的解法;

(2)在依据不等式的性质探究一元一次不等式的解法的过程中,加深对化归思想的体会·(二)目标解析

达到目标(1)的标志是:学生能说出一元一次不等式的特征,会解一元一次不等式,并能在数轴上表示出解集·达到目标(2)的标志是:学生能通过类比解一元一次方程的过程,获得解一元一次不等式的思路,即依据不等式的性质,将一元一次不等式逐步化简为xa或x

三、教学问题诊断分析

通过前面的学习,学生已掌握一元一次方程概念及解法,对解一元一次方程的化归思想有所体会但还不够深刻·因此,运用化归思想把形式复杂的不等式转化为xa或x

本节课的教学难点为:解一元一次不等式步骤的确定·四、教学过程设计

(一)引导观察

形成概念

问题:观察下面的不等式,它们有哪些共同特征?

x—726

3x2x+1 x50

—4x3

学生回答,教师可以引导学生从不等式中未知数的个数和次数两个方面去观察不等式的特点,并与一元一次方程的定义类比·师生共同归纳获得:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式·设计意图:引导学生通过观察给出不等式,归纳出它们的共同特征,进而得到一元一次不等式的定义,培养学生观察、归纳的能力·(二)通过类比研究解法

练习:利用不等式的性质解不等式x—726

学生尝试独立完成练习

教师结合解题过程,指出:由x—726可得到x26+7,也就是说解不等式和解方程一样,也可以移项,即把不等式一边的某项变号后移到另一边,而不改变不等号的方向·设计意图:通过解简单的一元一次不等式,让学生回忆利用解方程的过程,教师通过简化练习中的解题步骤,让学生明确不等式和解方程一样可以移项,为下面类比解方程形成解不等式的步骤作好准备·设问1:解一元一次方程的依据和一般步骤是什么?

学生回忆解一元一次方程的依据是等式的性质·一般步骤是:去分母,去括号,移项,合并同类项,系数化为1·设问2:解一元一次不等式能否采用类似的步骤?

学生讨论解一元一次不等式是否可以采用类似的步骤,教师再指出:利用不等式的.性质,采取与解一元一次方程类似的步骤,就可以求出一元一次不等式的解集·设计意图:通过回忆解一元一次方程的依据和一般步骤,让学生思考解一元一次不等式能否采用同样步骤,从而获得解一元一次不等式的思路·(三)例题讲解规范步骤

例:解下列不等式,并在数轴上表示解集(1)2(1+x)3(2)

设问(1):解一元一次不等式的目标是什么?

学生在教师问题的引导下,思考如何将一元一次不等式变形为最简形式·设问(2):你能类比解一元一次方程的步骤,解第(1)小题吗?

由学生独立完成,老师评讲

设问(3)对比不等式与2(1+x)3的两边,它们在形式上有什么不同?

设问(4):怎样将不等式变形,使变形后的不等式不含分母?

小组合作交流,老师点拨

设问(5):你能说出解一元一次不等式的基本步骤吗?

学生回答,教师总结:去分母,去括号,移项,合并同类项,系数化为1·设问(6):对比第(1)小题和第(2)小题的解题过程,系数化为1时应注意些什么?

学生回答,教师再强调:要看未知数系数的符号,若未知数的系数是正数,则不等号的方向不变,若是负数,则不等号的方向要改变·设计意图:通过解具体的一元一次不等式,引导学生明确解不等式以化归思想为指导,比较原不等式与目标形式(xa或x

(四)辨别异同深化认识

设问1:解一元一次不等式和解一元一次方程有哪些相同和不同处?

学生在教师的引导下将解一元一次不等式的过程与解一元一次方程的过程进行比较,思考二者的相同和不同处·相同之处:基本步骤相同:去分母、去括号、移项、合并同类项、系数化为1·基本思想相同:都是运用化归思想,都要变为最简形式·不同之处:解法依据不同:解不等式是依据不等式的性质,解方程依据等式的性质·最简形式不同:解一元一次不等式:最简形式是xa或x

设计意图:在归纳出一元一次不等式的解法之后,引导学生对比一元一次方程的解法,思考二者的异同,加深对一元一次不等式解法的理解,体会化归思想和类比思想·设问2:解一元一次不等式每一步变形的依据是什么?

学生作答,教师再引导学生体会结合例题的解题过程思考每一步变形的依据·设计意图:通过具体操作,归纳出解一元一次不等式的基本步骤及每一步变形的依据,提高学生的总结、归纳能力·(五)练习巩固形成能力

练习:解一元一次不等式x并把它的解集,在数轴上表示出来·学生独立解不等式,老师点评

设计意图:学生独立按照解集一元一次不等式的步骤解不等式,学以致用·(六)归纳小结反思提高

教师和学生一起回顾本节课的学习主要内容,并请学生回答以下问题:

(1)怎样解一元一次不等式?解一元一次不等式和解一元一次方程有哪些相同和不同处?

(2)解一元一次不等式运用了哪些数学思想?

设计意图:通过问题引导学生再次回顾本节课,从数学知识,数学思想方法等层面,提升对本节课所研究内容的认识·(七)布置作业,课外反馈

教科书习题第1,2,3题

设计意图:通过课后作业,教师及时了解学生对本节课知识的掌握情况,以便对教学进度和方法进行适当的调整·五、目标检测设计

1·解不等式

(1)—8x3(2)—x—(3)3x—74x—4

设计意图:本题主要考查学生解一元一次不等式时将系数化1和移项的准确性·2·解下列不等式,并分别把它们的解集在数轴上表示

(1)3(x+2)—15—2(x—2)(2)—2

设计意图:本题主要考查学生解一元一次不等式,并在数轴上表示解集的能力·

不等式解法教案 篇13

教学目标

1、知识与技能:

(1)理解一元一次不等式组及其解集的意义;

(2)掌握一元一次不等式组的解法。

2、过程与方法:

(1)经历通过具体问题抽象出不等式组的过程,培养学生逐步形成分析问题和解决问题的能力。

(2)经历一元一次不等式组解集的探究过程,培养学生的观察能力和数形结合的思想方法,渗透类比和化归思想。

3、情感、态度与价值观:

(1)感受数形结合思想在数学学习中的作用,养成自主探究的良好学习习惯。

(2)学生在解不等式组的过程中体会用数学解决问题的直观美和简洁美。

2学情分析

本节讨论的对象是一元一次不等式组。几个一元一次不等式合在一起,就得到一元一次不等式组。从组成成员上看,一元一次不等式组是在一元一次不等式基础上发展的新概念;从组成形式上看,一元一次不等式组与第八章学习的方程组有类似之处,都是同时满足几个数量关系,所求的都是集合不等式解集的公共部分或几个方程的公共解。因此,在本节教学中应注意前面的基础,让学生借助对已学知识的认识学习新知识。

另外,本节课是在学生学习了一元一次方程、二元一次方程组和一元一次不等式之后的又一次数学建模思想学习,是今后利用一元一次不等式组解决实际问题的关键,是后续学习一元二次方程、函数的重要基础,具有承前启后的重要作用。另外,在整个学习过程中数轴起着不可替代的作用,处处渗透着数形结合的'思想,这种数形结合的思想对学生今后学习数学有着重要的影响。

3重点难点

1、教学重点:对一元一次不等式组解集的认识及其解法。

2、教学难点:对一元一次不等式组解集的认识及确定。

3、教学关键:利用数轴确定不等式组中各个不等式解集的公共部分。

4教学过程4.1第一学时教学活动活动1【导入】温故知新

教师提问:

1、什么是一元一次不等式?

2、什么是一元一次不等式的解集?

3、如何求一元一次不等式的解集?

针对性练习:

(设计意图:检验学生是否理解和掌握一元一次不等式的相关概念,为本节新课内容的学习做好铺垫。同时对解不等式中的相关要点加以强调:①解不等式中,系数化为1时不等号的方向是否要改变;②在数轴上表示解集时“实心圆点”和“空心圆圈”的选择;③要正确理解利用数轴表示出来的不等式解集的几何意义。)

活动2【讲授】创设问题情景,探索新知

1、问题(课本第127页):用每分钟可抽30 t水的抽水机来抽污水管道里积存的污水,估计积存的污水

超过1 200 t而不足1 500 t,那么将污水抽完所用时间的范围是什么?

(设计意图:结合生活实例,让学生经历通过具体问题抽象出不等式组的过程,即经历知识的拓展过程,让学生体会到数学学习的内容是现实的、有意义的、富有挑战性的。)

2、引导学生找出问题中“积存的污水”需同时满足的两个不等关系:

超过1 200 t和不足1 500 t。

3、问题1:如何用数学式子表示这两个不等关系?

1)引导学生一起把这个实际问题转换为数学模型:

满足一个不等关系我们可列一个不等式,满足两个不等关系可以列出两个不等式。

设用x min将污水抽完,则x需同时满足以下两个不等式:

30x>1200, ①

30x<1500 ②

2)教师归纳一元一次不等式组的意义:

由于未知数x需同时满足上述两个不等式,那么类似于方程组,我们把这样两个不等式合起来,就组成一个一元一次不等式组。

(设计意图:把实际问题转换为数学模型,同时让学生根据一元一次不等式和二元一次方程组的有关概念来类推一元一次不等式组的有关概念,渗透类比和化归思想。)

4、问题2:怎样确定不等式组中既满足不等式①同时又满足不等式②的x的可取值范围?

1)教师分析:对于一元一次不等式组来说,组成不等式组的每一个不等式中都只含有一个未知数,

运用前面解一元一次不等式的知识,我们就能直接求出不等式组中的每一个一元一次不等式的解集。

2)得到解不等式组的第一个步骤:分别直接求出这两个不等式的解集。学生自行求解:

由不等式①,解得x>40

由不等式②,解得x<50

3)教师引导学生根据题意,容易得到:在这两个解集中,由于未知数x既要满足x>40,也要同时满足x<50,因此x>40和x<50这两个解集的公共部分,就是不等式组中x可以取值的范围。

(设计意图:让学生在教师的引导下探究不等式组的解集及其解法,养成自主探究的良好学习习惯。)

5、问题3:如何求得这两个解集的公共部分?

学生活动:将不等式①和②的解集在同一条数轴上分别表示出来。

(设计意图:启发学生可利用数轴的直观性帮助我们寻找这两个不等式解集的公共部分。)

教师活动:利用多媒体课件,用三种不同形式表示这两个解集,帮助学生求得这个公共部分。

(设计意图:结合介绍利用数轴确定公共部分的三种不同形式,突破本节课的难点,培养学生的观察能力和数形结合的思想方法。)

形式一:用两种不同颜色表示这两个解集

1)通过设置以下几个问题,要求学生通过观察、分组讨论、取值验证,自主得出结论。

(1)这两种颜色把数轴分成几个部分?

(2)每一个部分分别表示哪些数?

(3) 请每一小组的同学从这几个部分中各取2~3个数,分别代入两个不等式中,同时思考:哪部分的数既满足不等式①同时又满足不等式②?

2)学生通过自主探究、合作交流,得到这3个问题的正确答案。

3)得出结论:

只有红色和蓝色重叠的部分才既满足不等式①又同时满足不等式②。因此,红色和蓝色重叠的部分就是我们要找的x的可取值范围。

4)教师提问:两个不等式解集的界点:即实数40、50所在的点是否落在红色和蓝色重叠的部分?教师引导学生利用学过的验证法进行验证,并得出结论:两个界点没有落在红色和蓝色重叠的部分。

(设计意图:让学生对一系列的问题进行自主分析和解答,充分调动学生学习的主动性和积极性。同时在上述过程中,利用不同颜色的直观性,目的在于能让学生更清楚地找出不等式①和不等式②解集的公共部分。)

形式二:利用画斜线的方式:用两种不同方向的斜线分别画出x>40和x<50这两个部分的解集。

类似地,引导学生得出结论:两个解集的公共部分,就是图中两种不同方向斜线重叠的部分,从而得出结论。

形式三:结合课本,利用两条横线都经过的部分来确定两个解集的公共部分。

(设计意图:介绍不同的形式,让学生再一次鲜明、直观地体会:x的可取值范围是两个不等式解集的公共部分;进一步培养学生的观察能力和数形结合的思想方法。)

6、问题4:如何表示这个可取值范围?

教师分析:在数轴上,未知数x落在实数40和50之间。而我们知道,数轴上的实数,它们从左到右的顺序,就是从小到大的顺序。因此,我们可将这三个数先按从小到大的顺序书写出来,再用小于号依次进行连接,记为4040且x<50。

7、小结并解决课本问题:原不等式组中x的取值范围为40

(设计意图:首尾呼应,完成了实际问题的研究,通过这个研究过程,让学生进行感悟、归纳、领会知识的真谛。)

8、同时,类比一元一次不等式解集的几何意义,教师再次进行归纳:

在数轴上,若在40

一般地,几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集。解不等式组就是求它的解集。

9、结合上述学习过程,让学生和教师一起归纳解一元一次不等式组的步骤:

(1)分别求出不等式组中各个不等式的解集;

(2)把这些解集分别在同一条数轴上表示出来;

(3)确定各个不等式解集的公共部分;

(4)写出不等式组的解集。

(设计意图:及时进行小结,使学生对所学知识更加的系统化。)

不等式解法教案 篇14

学习目标:

1、了解一元一次不等式组的概念,理解一元一次不等式组的解集的意义。

2、会解由两个一元一次不等式组成的一元一次不等式组,能借助数轴正确的表示一元一次不等式组的解集。

3、通过探讨一元一次不等式组的解法以及解集的确定,渗透转化思想,进一步感受数形结合在解决问题中的作用。

4、体验不等式在实际问题中的作用,感受数学的应用价值。

学习重点:

一元一次不等式组的解法

学习难点:

一元一次不等式组解集的确定。

一、学前准备

【回顾】

1.解不等式 ,并把解集在数轴上表示出来。

【预习】

1、 认真阅读教材34-35页内容

2、____________ _ 叫做一元一次不等式组。

______ _______叫做一元一次不等式组的解集。

叫做解不等式组。

4、求下列两个不等式的解集,并在同一条数轴上表示出来

二、探究活动

【例题分析】

例1. (问题1)题中的买5筒钱不够,买4筒钱又多的含义是什么?

例2. (问题2)题中的相等关系是什么?不等关系又是什么?

例3. 解不等式组

【小结】

不等式组解集口诀

同大取大,同小取小,大小小大中间找,大大小小解不了

一元一次不等式组解集四种类型如下表:

不等式组(a

(1)xb

xb 同大取大

(2)x

x

(3)xax

a

(4)xb

无解 大大小小解不了

【课堂检测】

1、不等式组 的解集是( )

A. B. C. D.无解

2、不等式组 的解集为( )

A.-1

3、不等式组 的解集在数轴上表示正确的是( )

A B C D

4、写出下列不等式组的解集:(教材P35练习1)

三、自我测试

1.填空

(1)不等式组x-1 的解集是_ __;

(2)不等式组x-2 的解集 ;

(3)不等式组x1 的解集是__ __;

(4)不等式组x-4 解集是___ ___。

2、解下列不等式组,并在数轴上表示出来

(1)

四、应用与拓展

若不等式组 无解,则m的取值范围是 ________

本文来源:http://www.57mb.com/5/27313.html